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A definition of a fractional derivative in the Marchaut form [l] is used to regularize the integro- 

differential expressions describing the propagation of elastic waves in solids. Using a spline inter- 

polation, a stable algorithm is constructed for the approximate calculation of the initial integro- 
differential expressions, and estimates are obtained for the residues of the quadrature formulae. 

THE SOLUTIONS of a wide range of problems in the dynamic theory of elasticity are unstable to small 

variations of both the region [2] and the boundary conditions [3]. Solutions in quadratures (see, for 
example, [3-71) turn out to be unsuitable for practical calculations because they are represented in the 
form of integro-differential expressions with singularities. As is well known [8], numerical differentiation 
of functions whose values are found approximately with a certain error is an unstable operation. 

1. FORMULATION OF THE PROBLEM 

We will consider the integro-differential operator B acting on a function f of two independent variables 

as given by the formula 

BfGw, Y. t) = + i d+ j+k,x; Y - t) (t - r)H (t - T - c -’ Jx’ + 0) - E)‘) 

0 0 x/o - 7)1 - C-a CJa + ty - E)‘) 
f (E, r)dE (1-l) 

where H is the Heaviside function, g(x, cc) is a fairly smooth function of two independent variables 
(which play the role of a weighting function), and c is a positive constant. 

The expression on the right-hand side of (1.1) describes the propagation of elastic waves with a velocity 

c in a solid occupying a region (0 < x, 0 c y) in a Cartesian system of coordinates. The function f defines 
the external action on the elastic solid from the side of one of the boundaries (x =O), while B is a 

resolving operator corresponding to the mixed problem for the vector Lame equation. Operators of the 
form (1.1) are encountered in many investigations connected with the reflection and diffraction of 
acoustic and elastic waves [5, 91. Moreover, Green’s functions of the initial and initial boundary-value 
problems for partial differential equations of the hyperbolic type are, as a rule, distributed. Hence, the 
construction of the solutions of such problems leads to the problem of regularizing the corresponding 

integro-differential expressions with movable singularities and the development of appropriate numerical 
methods. 
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2. REGULARIZATION OF THE INTEGRO-DIFFERENTIAL EXPRESSION (1.1) 

We wiLS assume that the first derivative of the function f is of Hijlder order a>~$. Replacing the 
variables 5 = y f ,((c’t2v2 -x2), z= t-k on Ihe right-hand side of (1.1) and using the expression 

we will have, after differentiation by parts and some reduction 

Expression (2.1), regularized in Marchaut form, also exists for weaker constraints on the function f, 
which were indicated above. Nevertheless, it was possible to extend the region of definition of the 

operator 8, which includes the class of Holder functions of order 01> X* 

3. APPROXIMATE CALCULATION OF THE INTEGRO-DIFFERENTIAL 
EXPRESSION (1.1) 

We will assume, for s~p~cit~~ that the function A-, t) at the initiaf instant of time t= 0 vanishes. We 
will introduce the following notation 

To approximate the right-hand side of (2.1) it is sufficient to construct approximate formulae for 
evaluating the integrals ZO(vo, w) and Z2(v0, w). Hence, the minus sign OCL the function @..(v, s) will 
henceforth be omitted 

We will assume that the function fis defined by the matrix ffln, i)) of its values f(y,, t$) at the points 

y,=(m-@Zr (m=1,2,...,i%f), t*=kr (i=it2*...* .?) (h and z are the steps with respect to the space and 

time variables, respectively), while the function g(x? 0~) is specified ana~~i~~~y. Approximate values of 
Z,,(v,, w) and Z,(v,,, w) will be sought in the same pattern (i,e” at the points y, and r,). 

We will introduce an integer index N which we will put equal to m-l, if x2 +y2 ac?.Otherwise 
(x” +y2 3 f) we will assume N = [J(c’? -x2)/~] is the integer part of the number d(c’? -2)/h. We will 
also introduce the sequence of points v, = d(n’8 + x’)/(ct) (n = 0, 1, . . . , N) and s, = l-v/j (v = 0, 

I ?...I in), where 
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in = [j - JnThT+/(cs) (3.1) 

is the integer part of the number in the square brackets. If in SO, the sequence of points {s,} is ignored. 

For N 2 1 we can represent the expressions for Z,(v,, w) and Z2(v0, w) in the form of sums 

If the indices “iN” or “in” are greater than zero, we have 

Approximate values of the integrals Z,(v,_,, v,, s,, s,_~) (v = 1, 2, . . . , in; n = 1, 2, . . . , N) can be found 

using well-known numerical methods, since the integral functions corresponding to them have no 

singularities. 
To approximate the integrals Z3(vN, w, s,) and Z3(v._r, v,, s,) one can use the linear spline approx- 

imation 

I$@, s) = $0, sin) (sin - VI -’ (s - VI + w, s) (3.2) 

where 

and 8, and 8,. are certain points from the interval [v s,]. As a result we obtain the following equations 

1, (VN, w, SW) = i J 

CM Ok spf) 
VN v’-vg+ Sk- v5 dv + RNO(@) 

Z,(vn-l.v~ s&Yj Ctv”d(v, SinI 
v= - v: s& - v’ 

dv + R,,o (6) 
h-1 

(3.3) 

(3.4) 

the errors of which R,,(g) and R,,,($) are of the order of iY(H+T)3’2, where T = z/t = l/j, H = h/(d). 
For n>l the positive function on the right-hand side of (3.4) has no singularities, and hence no 

difficulties arise in approximating the integral Z,(v,_,, v,, So) in this case. If n = 1, we can replace the 

function chr2+(v, sio) (s~-v)-~‘~ in the interval [v,, v,] by a linear spline. As a result we obtain the 

following approximate formula 

*I +dTT h - 

VO -1 (3.5) 
VI -vo 

For the approximate evaluation of the integral on the right-hand side of (3.3) one can use the formula 

of left rectangles. One can similarly obtain the approximate value of the integral Zf(vN, w, s,, s,_~). 
If the indices “iN” or “in” are less than unity, the integrals ZO(vN, w) or I&_,, v,) can be approxi- 

mated directly. We finally obtain 

(w - v,- l>VL- 1 
1 

10 (VN, w) = 
Jx’ +Y 

Jv& - vi J,-l(@(V, l)), WE 7 < 1 

zo@N, “‘I-= - 
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The approximate values of the integral Z,(v,, v,) are found from (3.5) where we must replace the 
number sn by unity. 

For the approximate evaluation of the integral Zz(vN, w) we replace the integrand without the factor 
d(l-9) by its value at the left-hand end of the integral. 

The integral Z,(v,_,, v,), when n > 0, is approximated using the trapezoidal rule. 
If n = 0, integrating the function cfvvld(l-ti)f(v-R, t-tv)g(x, R) by the linear spline in the interval 

[v,,, v,] we obtain the approximate formula 

The approx~ation equations given above contain values of the fun~~on fi. . . , f - tv,) at points which 

do not belong to the pattern. Using the index (3.l)‘we can obtain values of the function f(. . . , t-w,,) by 

linear interpolation 

ft. - * , ~-~~)~U+~-j+j~n)f(...,in)+t.t-jv,-in)f(...,h+l) (3.6) 

We will consider, finally, the case when N = 0. Suppose x2 + yz c c? and m = 1. In the interval [vO, 

4(x’ +y2)/(ct)] we replace the function (l-~~)“‘~g(x, R)xf(y- R, t-N) by itsvalue at the left-hand end 

of this interval. As a result we obtain the following approximate formula 

The functionfil, t-tv,) must be determined by linear interpolation (3.6). 

The approximate evaluation of the integral Z,,(v,,, w) in the case when 

depends on the value of the index ii, defied as the integer part of the number 
we have 

m=l and ct%~(x*+y*) 
j-4(x2 + y”)/(n). If ii 3 1, 

To approximate Z,(v,, w, sii) we interpolate the function Cp( v, .) by a linear spline (3.2). Then 

Replacing the function vg (x, R) x (s: -v~)-~“M~, SJ in the interval [vO, 4(x” + y’)/(cf)] by its value at 

the point v = v,,, we obtain 

We can similarly find the approximate values of the integrals Z,(v,,, w, s,, s,_,) (v = 1, 2, , . . , ii). 
If ii d 0, the use of linear interpolation (3.2) with respect to the variable s and modification of the left- 

rectangle formula leads to the following approximate equation 
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Z~(VO. w, l)=Htct-xl xyg@qf(m, r - tv,) 
J2t’ -x 

Suppose 4(x” + y”) z ct and N =O. Replacing the function g(x, R)f(y - R, t- tv) by the constant g(x, 
OMm, t- tv,,), we wilI have 

Iz (V,, w) = H&f - r)g or, om% t - tv, W2 

By analogy with what was done for the case when ii 60, we can obtain an approximate value of the 
integral I,@,, w). 
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